Table of Contents

Indicators

S# provides more than 140 standard technical analysis indicators. This allows you to use ready-made indicators rather than creating them from scratch. You can also create your own indicators based on existing ones, as shown in the Custom Indicator section. All base classes for working with indicators, as well as the indicators themselves, are located in the StockSharp.Algo.Indicators namespace.

Integrating Indicators into a Trading Algorithm

  1. First, you need to create an indicator. An indicator is created like a regular .NET object:

    var longSma = new SimpleMovingAverage { Length = 80 };
    var shortSma = new SimpleMovingAverage { Length = 30 };
    
    // It's recommended to add indicators to the strategy collection
    Indicators.Add(longSma);
    Indicators.Add(shortSma);
    
  2. Next, you need to process market data for the indicators. The most efficient approach is to use the result returned by the Process method:

    private void ProcessCandle(ICandleMessage candle)
    {
        // Process the candle with indicators and immediately save the results
        var longValue = longSma.Process(candle);
        var shortValue = shortSma.Process(candle);
    
        // Use the results for trading decisions
        if (shortValue.GetValue<decimal>() > longValue.GetValue<decimal>())
        {
            // Buy signal
            BuyAtMarket();
        }
    }
    

    An indicator accepts IIndicatorValue as input. Some indicators operate with a simple number, such as SimpleMovingAverage. Others require a complete candle, such as MedianPrice. Therefore, input values need to be cast either to DecimalIndicatorValue or to CandleIndicatorValue. The indicator's resulting value follows the same rules as the input value.

  3. Both the resulting and input values of the indicator have the IIndicatorValue.IsFinal property, which indicates that the value is final and the indicator will not change at this point in time. For example, the SimpleMovingAverage indicator is formed based on the candle's closing price, but at the current moment, the final closing price is unknown and changing. In this case, the resulting value of IIndicatorValue.IsFinal will be false. If you pass a completed candle to the indicator, both the input and resulting values of IIndicatorValue.IsFinal will be true.

  4. Recommended approach: directly use the values obtained from calling the Process method, instead of subsequently calling GetCurrentValue:

    // Example of a strategy with two moving averages
    private void ProcessCandle(ICandleMessage candle)
    {
        // Process the candle with indicators and immediately save the results
        var longValue = _longSma.Process(candle);
        var shortValue = _shortSma.Process(candle);
    
        // Draw on the chart
        DrawCandlesAndIndicators(candle, longValue, shortValue);
    
        if (!IsFormedAndOnlineAndAllowTrading()) 
            return;
    
        // Use the obtained values for comparison
        var isShortLessCurrent = shortValue.GetValue<decimal>() < longValue.GetValue<decimal>();
        var isShortLessPrev = _shortSma.GetValue(1) < _longSma.GetValue(1);
    
        // Check if a crossover occurred
        if (isShortLessCurrent == isShortLessPrev) 
            return;
    
        var volume = Volume + Math.Abs(Position);
    
        // Trading actions based on the signal
        if (isShortLessCurrent)
            SellMarket(volume);
        else
            BuyMarket(volume);
    }
    

    This approach has the following advantages:

    • It aligns with the streaming data processing model (receive → process → use the result)
    • It's more efficient as it avoids repeatedly accessing the container of accumulated values
    • It eliminates potential synchronization issues between calling Process and subsequent GetCurrentValue calls
  5. Not recommended approach (less efficient):

    // Suboptimal approach
    foreach (var candle in candles)
    {
        // Process the candle but ignore the returned value
        _longSma.Process(candle);
        _shortSma.Process(candle);
    }
    
    // Later try to get values via GetCurrentValue()
    var isShortLessThenLong = _shortSma.GetCurrentValue() < _longSma.GetCurrentValue();
    

    With this approach, there's an additional access to the container of historical indicator values, which introduces delays and disrupts the streaming model of data processing.

  6. All indicators have the BaseIndicator.IsFormed property, which indicates whether the indicator is ready for use. For example, the SimpleMovingAverage indicator has a period, and until the indicator processes a number of candles equal to the indicator's period, the indicator will be considered not ready for use. And the BaseIndicator.IsFormed property will be false.

Example of a Complete Moving Average Strategy

Below is an example of a strategy that correctly uses indicators, processing candles and utilizing the results of the Process method:

public class SmaStrategy : Strategy
{
    private readonly StrategyParam<DataType> _series;
    private readonly StrategyParam<int> _longSmaLength;
    private readonly StrategyParam<int> _shortSmaLength;

    private SimpleMovingAverage _longSma;
    private SimpleMovingAverage _shortSma;

    private IChartIndicatorElement _longSmaIndicatorElement;
    private IChartIndicatorElement _shortSmaIndicatorElement;
    private IChartCandleElement _chartCandleElement;
    private IChartTradeElement _tradesElem;
    private IChart _chart;

    public SmaStrategy()
    {
        base.Name = "SMA strategy";

        // Initialize strategy parameters
        _longSmaLength = Param(nameof(LongSmaLength), 80);
        _shortSmaLength = Param(nameof(ShortSmaLength), 30);
        _series = Param(nameof(Series), DataType.TimeFrame(TimeSpan.FromMinutes(15)));
    }

    protected override void OnStarted(DateTimeOffset time)
    {
        base.OnStarted(time);

        // Create indicators
        _shortSma = new SimpleMovingAverage { Length = _shortSmaLength.Value };
        _longSma = new SimpleMovingAverage { Length = _longSmaLength.Value };

        // Add indicators to the strategy collection
        Indicators.Add(_shortSma);
        Indicators.Add(_longSma);

        // Initialize chart
        _chart = GetChart();
        if (_chart != null)
        {
            InitChart();
        }
        
        // Subscribe to candles
        var subscription = new Subscription(_series.Value, Security);

        Connector
            .WhenCandlesFinished(subscription)
            .Do(ProcessCandle)
            .Apply(this);

        Connector.Subscribe(subscription);
    }

    private void ProcessCandle(ICandleMessage candle)
    {
        // Process the candle with indicators and save the results
        var longValue = _longSma.Process(candle);
        var shortValue = _shortSma.Process(candle);
        
        // Draw on the chart
        DrawCandlesAndIndicators(candle, longValue, shortValue);
        
        // Check conditions for trading
        if (!IsFormedAndOnlineAndAllowTrading()) 
            return;

        // Compare current and previous indicator values
        var isShortLessCurrent = shortValue.GetValue<decimal>() < longValue.GetValue<decimal>();
        var isShortLessPrev = _shortSma.GetValue(1) < _longSma.GetValue(1);

        // Check for crossover
        if (isShortLessCurrent == isShortLessPrev) 
            return;

        var volume = Volume + Math.Abs(Position);

        // Trading actions based on the signal
        if (isShortLessCurrent)
            SellMarket(volume);
        else
            BuyMarket(volume);
    }

    private void DrawCandlesAndIndicators(ICandleMessage candle, IIndicatorValue longSma, IIndicatorValue shortSma)
    {
        if (_chart == null) return;
        var data = _chart.CreateData();
        data.Group(candle.OpenTime)
            .Add(_chartCandleElement, candle)
            .Add(_longSmaIndicatorElement, longSma)
            .Add(_shortSmaIndicatorElement, shortSma);
        _chart.Draw(data);
    }

    // Other chart initialization methods omitted for brevity
}

This example demonstrates the correct approach to working with indicators in the StockSharp streaming model.